
The Styx Architecture for Distributed Systems

Rob Pike
Dennis M. Ritchie

Computing Science Research Center
Lucent Technologies, Bell Labs

Murray Hill, New Jersey
USA

ABSTRACT

A distributed system is constructed from a set of relatively independent components that
form a unified, but geographically and functionally diverse entity. Examples include net-
worked operating systems, Internet services, the national telephone switching system,
and in general all the technology using today’s diverse digital networks. Nevertheless,
distributed systems remain difficult to design, build, and maintain, primarily because of
the lack of a clean, perspicuous interconnection model for the components.

Our experience with two distributed operating systems, Plan 9 and Inferno, encourages
us to propose such a model. These systems depend on, advocate, and generally push to
the limit a fruitful idea: to present their resources as files in a hierarchical name space.
The objects appearing as files may represent stored data, but may also be devices,
dynamic information sources, interfaces to services, and control points. The approach
unifies and provides basic naming, structuring, and access control mechanisms for all sys-
tem resources. A simple underlying network protocol, Styx, forms the core of the archi-
tecture by presenting a common language for communication within the system.

Even within non-distributed systems, the presentation of services as files advantageously
extends a familiar scheme for naming, classifying, and connecting to system resources.
More important, the approach provides a natural way to build distributed systems, by
using well-known technology for attaching remote file systems. If resources are repre-
sented as files, and there are remote file systems, one has a distributed system: resources
available in one place are usable from another.

Introduction

The Styx protocol is a variant of a protocol called 9P that was developed for the Plan 9 operating
system[9man]. For simplicity, we will use the name Styx throughout this paper; the difference concerns
only the initialization of a connection.

The original idea behind Styx was to encode file operations between client programs and the file system, to
be translated into messages for transmission on a computer network. Using this technology, Plan 9 sepa-
rates the file server�a central repository for permanent file storage�both from the CPU server�a large
shared-memory multiprocessor�and from the user terminals. This physical separation of function was
central to the original design of the system; what was unexpected was how well the model could be used to
solve a wide variety of problems not usually thought of as file system issues.

The breakthrough was to realize that by representing a computing resource as a form of file system, many
of the difficulties of making that resource available across the network would disappear naturally, because
Styx could export the resource transparently. For example, the Plan 9 window system, 8½ [Pike91], is
implemented as a dynamic file server that publishes files with names like /dev/mouse and /dev/screen
to provide access to the local hardware. The /dev/mouse file, for instance, may be opened and read like a
regular file, in the manner of UNIXTM device files, but under 8½it is multiplexed: each client program has a
private /dev/mouse file that returns mouse events only when the client’s window is the active one on the
display. This design provides a clean, simple mechanism for controlling access to the mouse. Its real
_____________________
Originally appeared in Bell Labs Technical Journal, Vol. 4, No. 2, April-June 1999, pp. 146-152.
Copyright © 1999 Lucent Technologies Inc. All rights reserved.



- 2 -

strength, though, is that the representation of the window system’s resources as files allows Styx to make
those resources available across the network. For example, an interactive graphics program may be run on
a CPU server simply by having 8½serve the appropriate files to that machine.

Note that although the resources published by Styx behave like files�they have file names, file permissions,
and file access methods�they do not need to exist as standard files on disk. The /dev/mouse file is
accessed by standard file I/O mechanisms but is nonetheless a transient object fabricated dynamically by a
running program; it has no permanent existence.

By following this approach throughout the system, Plan 9 achieves a remarkable degree of transparency in
the distribution of resources[PPTTW93]. Besides interactive graphics, services such as debugging, mainte-
nance, file backup, and even access to the underlying network hardware can be made available across the
network using Styx, permitting the construction of distributed applications and services using nothing more
sophisticated than file I/O.

The Styx protocol

Styx’s place in the world is analogous to Sun NFS[RFC][NFS] or Microsoft CIFS[CIFS], although it is sim-
pler and easier to implement [Welc94]. Furthermore, NFS and CIFS are designed for sharing regular disk
files; NFS in particular is intimately tied to the implementation and caching strategy of the underlying
UNIX file system. Unlike Styx, NFS and CIFS are clumsier at exporting dynamic device-likefiles such as
/dev/mouse .

Styx provides a view of a hierarchical, tree-shaped file system name space[Nee89], together with access
information about the files (permissions, sizes, dates) and the means to read and write the files. Its users
(that is, the people who write application programs), don’t see the protocol itself; instead they see files that
they read and write, and that provide information or change information.

In use, a Styx client is an entity on one machine that establishes communication with another entity, the
server , on the same or another machine. The client mechanisms may be built into the operating system, as
they are in Plan 9 or Inferno[INF1][INF2], or into application libraries; a server may be part of the operating
system, or just as often may be application code on a separate server machine. In any case, the client and
server entities communicate by exchanging messages, and the effect is that the client sees a hierarchical file
system that exists on the server. The Styx protocol is the specification of the messages that are exchanged.

At one level, Styx consists of messages of 13 types for

� Starting communication (attaching to a file system);

� Navigating the file system (that is, specifying and gaining a handle for a named file);

� Reading and writing a file; and

� Performing file status inquiries and changes

However, application writers simply code requests to open, read, or write files; a library or the operating
system translates the requests into the necessary byte sequences transmitted over a communication channel.
The Styx protocol proper specifies the interpretation of these byte sequences. It fits, approximately, at the
OSI Session Layer level of the ISO standard classification. Its specification is independent of most details of
machine architecture and it has been successfully used among machines of varying instruction sets and data
layout. The protocol is summarized in Table 1.

In use, an operation such as

open("/usr/rob/.profile", O_READ);

is translated by the underlying system into a sequence of Styx messages. After establishing the initial con-
nection to the file server, an attach message authenticates the user (the person or agent accessing the files)
and returns an object called a FID (file ID) that represents the root of the hierarchy on the server. When the
open() operation is executed, it proceeds as follows.

� A clone message duplicates the root FID , returning a new FID that can navigate the hierarchy
without losing the connection to the root.

� The new FID is then moved to the file /usr/rob/.profile by a sequence of walk messages
that step along, one path component at a time (usr , rob , .profile ).

� Finally, an open message checks that the user has permission to read the file, permitting subse-
quent read and write operations (messages) on the FID .



- 3 -

___________________________________________________
Name Description___________________________________________________
attach Authenticate user of connection; return FID
clone Duplicate FID
walk Advance FID one level of name hierarchy
open Check permissions for file I/O
create Create new file
read Read contents of file
write Write contents of file
close Discard FID
remove Remove file
stat Report file state: permissions, etc.
wstat Modify file state
error Return error condition for failed operation
flush Disregard outstanding I/O requests___________________________________________________




































Table 1. Summary of Styx messages.

� Once I/O is completed, the close message will release the FID.

At a lower level, implementations of Styx depend only on a reliable, byte-streamTransport communications
layer. For example, it runs over either TCP/IP, the standard transmission control protocol and Internet pro-
tocol, or Internet link (IL), which is a sequenced, reliable datagram protocol using IP packets. It is worth
emphasizing, though, that the model does not require the existence of a network to join the components;
Styx runs fine over a Unix pipe or even using shared memory. The strength of the approach is not so much
how it works over a network as that its behavior over a network is identical to its behavior locally.

Architectural approach

Styx, as a file system protocol, is merely a component in a more encompassing approach to system design:
the presentation of resources as files. This approach will be discussed using a sequence of examples.

Example: networking

As an example, access to a TCP/IP network in Inferno and Plan 9 systems appears as a piece of a file sys-
tem, with (abbreviated) structure as follows[PrWi93]:

/net/
dns/
tcp/

clone
stats
0/

ctl
status
data
listen

1/
...

...
ether0/

0/
ctl
status
...

1/
...

...

This represents a file system structure in which one can name, read, and write ‘files’ with names like
/net/dns, /net/tcp/clone, /net/tcp/0/ctl and so on; there are directories of files /net/tcp and
/net/ether0. On the machine that actually has the network interface, all of these things that look like
files are constructed by the kernel drivers that maintain the TCP/IP stack; they are not real files on a disk.
Operations on the ‘files’ turn into operations sent to the device drivers.



- 4 -

Suppose an application wishes to establish a connection over TCP/IP to www.bell-labs.com . The first
task is to translate the domain name www.bell-labs.com to a numerical internet address; this is a compli-
cated process, generally involving communicating with local and remote Domain Name Servers. In the
Styx model, this is done by opening the file /dev/dns and writing the literal string www.bell-labs.com
on the file; then the same file is read. It will return the string 204.178.16.5 as a sequence of 12 characters.

Once the numerical Internet address is acquired, the connection must be established; this is done by open-
ing /net/tcp/clone and reading from it a string that specifies a directory like /net/tcp/43 , which rep-
resents a new, unique TCP/IP channel. To establish the connection, write a message like connect
204.178.16.5 on the control file for that connection, /net/tcp/43/ctl . Subsequently, communication
with www.bell-labs.com is done by reading and writing on the file /net/tcp/43/data .

There are several things to note about this approach.

� All the interface points look like files, and are accessed by the same I/O mechanisms already
available in programming languages like C, C++, or Java. However, they do not correspond to
ordinary data files on disk, but instead are creations of a middleware code layer.

� Communication across the interface, by convention, uses printable character strings where fea-
sible instead of binary information. This means that the syntax of communication does not
depend on CPU architecture or language details.

� Because the interface, as in this example with /net as the interface with networking facilities,
looks like a piece of a hierarchical file system, it can easily and nearly automatically be exported
to a remote machine and used from afar.

In particular, the Styx implementation encourages a natural way of providing controlled access to networks.
Lucent, like many organizations, has an internal network not accessible to the international Internet, and
has a few gateways between the inside and outside networks. Only the gateway machines are connected to
both, and they implement the administrative controls for safety and security. The advantage of the Styx
model is the ease with which the outside Internet can be used from inside. If the /net file tree described
above is provided on a gateway machine, it can be used as a remote file system from machines on the
inside. This is safe, because this connection is one-way:inside machines can see the external network inter-
faces, but outside machines cannot see the inside.

Example: debugging

A similar approach, borrowed and generalized from the UNIX system [Kill], is useful for controlling and
discovering the status of the running processes in the operating system. Here a directory /proc contains a
subdirectory for each process running on the system; the names of the subdirectories correspond to process
IDs:

/proc/
1/

status
ctl
fd
text
mem
...

2/
status
ctl
...

...

The file names in the process directories refer to various aspects of the corresponding process: status con-
tains information about the state of the process; ctl , when written, performs operations like pausing,
restarting, or killing the process; fd names and describes the files open in the process; text and memrepre-
sent the program code and the data respectively.

Where possible, the information and control are again represented as text strings. For example, one line
from the status file of a typical process might be

samterm dmr Read 0 20 2478910 0 0 ...



- 5 -

which shows the name of the program, the owner, its state, and several numbers representing CPU time in
various categories.

Once again, the approach provides several payoffs. Because process information is represented in file form,
remote debugging (debugging programs on another machine) is possible immediately by remote-mounting
the /proc tree on another machine. The machine-independentrepresentation of information means that
most operations work properly even if the remote machine uses a different CPU architecture from the one
doing the debugging. Most of the programs that deal with status and control contain no machine-
dependent parts and are completely portable. (A few are not, however: no attempt is made to render the
memory data or instructions in machine-independentform.)

Example: PathStarTM Access Server

The data shelf of Lucent’s PathStar Access Server[PATH] uses Styx to connect the line cards and other
devices on the shelf to the control computer. In fact, Styx is the protocol for high-levelcommunication on
the backplane.

The file system hierarchy served by the control computer includes a structure like this:

/trip/
config
admin/

ospfctl
...

boot/
0/

ctl
eeprom
memory
msg
pack
alarm
...

1/
...

/net/
...

The directories under /net are similar to those in Plan 9 or Inferno; they form the interface to the external
IP network. The /trip hierarchy represents the control structure of the shelf.

The subdirectories under /trip/boot each provide access to one of the line cards or other devices in the
shelf. For example, to initialize a card one writes the text string reset to the ctl file of the card, while
bootstrapping is done by copying the control software for the card into the memory file and writing a
reset message to ctl. Once the line card is running, the other files present an interface to the higher-level
structure of the device: pack is the port through which IP packets are transferred to and from the card,
alarm may be read to discover outstanding conditions on the card, and so on.

All this structure is exported from the shelf using Styx. The external element management software (EMS)
controls and monitors the shelf using Styx operations. For example, the EMS may read
/trip/boot/7/alarm and discover a diagnostic condition. By reading and writing the other files under
/trip/boot/7/, the card may be taken off line, diagnosed, and perhaps reset or substituted, all from the
system running the EMS, which may be elsewhere in the network.

Another example is the implementation of SNMP in the PathStar Access Server. The functionality of SNMP
is usually distributed through the various components of a network, but here it is a straightforward adap-
tion process, running anywhere in the network, that translates SNMP requests to Styx operations in the net-
work element. Besides dramatically simplifying the implementation, the natural ability for aggregation per-
mits a single process to provide SNMP access to an arbitrarily complex network subsystem. Yet the struc-
ture is secure: the file-orientednature of the operations make it easy to establish standard authentication
and security controls to guarantee that only trusted parties have access to the SNMP operations.

There are local benefits to this architecture, as well. Styx provides a single point in the design where control
can be separated from the details of the underlying fabric, isolating both from changes in the other. Compo-
nents become more adaptable: software can be upgraded without worrying about hidden dependencies on
the hardware, and new hardware may be installed without updating the control software above.



- 6 -

Security issues

Styx provides several security mechanisms for discouraging hostile or accidental actions that injure the
integrity of a system.

The underlying file-communicationprotocol includes user and group identifiers that a server may check
against other authentication. For example, a server may check, on a request to open a file, that the user ID
associated with the request is permitted to perform the operation. This mechanism is familiar from
general-purposeoperating systems, and its use is well-known. It depends on passwords or stronger mecha-
nisms for authenticating the identity of clients.

The Styx approach of providing remote resources as file systems over a network encourages genuinely
secure access to the resources in a way transparent to applications, so that authentication transactions need
not be provided as part of each. For example, in Inferno, the negotiation of an initial connection between
client and server may include installation of any of several encrypting or message-digestingprotocols that
supervise the channel. All application use of the resources provided by the server is then protected against
interference, and the server has strong assurance that its facilities are being used in an authorized way. This
is relevant both for general-purpose file servers, and, in the telephony field, is especially useful for safe
remote administration.

Summary

Presentation of resources as a piece of a possibly remote file system is an attractive way of creating dis-
tributed systems that treads a path between two extremes:

1 All communication with other parts of the system is by explicit messages sent between components.
This communication differs in style from applications’ use of local resources.

2 All communication is by means of closely shared resources: the CPU-addressablememory in various
parts is made directly available across a big network; applications can read and write far-awayobjects
exactly as they do those on the same motherboard as their own CPU.

Something like the first of these extremes is usually more evident in today’s systems, although either the
operating system or software layered upon it usually paper over some of the rough spots. The second
remains more difficult to approach, because networks (especially big ones like the Internet) are not very
reliable, and because the machines on them are diverse in processor architecture and in installed software.

The design plan described and advocated in this paper lies between the two extremes. It has these advan-
tages:

� A simple, familiar programming model for reading and writing named files . File systems have well-defined
naming, access, and permissions structures.

� Platform and language independence . Underlying access to resources is at the file level, which is pro-
vided nearly everywhere, instead of depending on facilities available only with particular languages
or operating systems. C++ or Java classes, and C libraries can be constructed to access the facilities.

� A hierarchical naming and access control structure . This encourages clean and well-structureddesign of
resource naming and access.

� Easy testing and debugging. By using well-specified,narrow interfaces at the file level, it is straightfor-
ward to observe the communication between distributed entities.

� Low cost . Support software, at both client and server, can be written in a few thousand lines of code,
and will occupy only small space in products.

This approach to building systems is successful in the general-purposesystems Plan 9 and Inferno; it has
also been used to construct systems specialized for telephony, such as Mantra[MAN] and the PathStar
Access Server. It supplies a coherent, extensible structure both to the internal communications within a sin-
gle system and external communication between heterogeneous components of a large digital network.

References

[NFS] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, ‘‘Design and Implementation of the Sun Net-
work File System’’, Proc. Summer 1985 USENIX Conf. , Portland, Oregon, June 1985, pp. 119-130.

[RFC] Internet RFC 1094.

[9man] Plan 9 Programmer’s Manual, Second Edition, Vol. 1 and 2, Bell Laboratories, Murray Hill, N.J., 1995.



- 7 -

[Kill84] T. J. Killian, ‘‘Processes as Files’’, Proc. Summer 1984 USENIX Conf. , June 1984, Salt Lake City, Utah, June 1984,
pp. 203-207.

[Pike91] R. Pike, ‘‘8½, the Plan 9 Window System’’, Proc. Summer 1991 USENIX Conf. , Nashville TN, June 1991, pp.
257-265.

[PPTTW93] R. Pike, D.L. Presotto, K. Thompson, H. Trickey, and P. Winterbottom, ‘‘The Use of Name Spaces in Plan 9’’,
Op. Sys. Rev. , Vol. 27, No. 2, April 1993, pp. 72-76.

[PrWi93] D. L. Presotto and P. Winterbottom, ‘‘The Organization of Networks in Plan 9’’, Proc. Winter 1993 USENIX
Conf. , San Diego, Calif., Jan. 1993, pp. 43-50.

[Nee89] R. Needham, ‘‘Names’’, in Distributed systems, edited by S. Mullender, Addison-Wesley,Reading, Mass., 1989,
pp. 89-101.

[CIFS] Paul Leach and Dan Perry, ‘‘CIFS: A Common Internet File System’’, Nov. 1996,
http://www.microsoft.com/mind/1196/cifs.htm.

[INF1] Inferno Programmer’s Manual, Third Edition, Vol. 1 and 2, Vita Nuova Holdings Limited, York, England, 2000.

[INF2] S.M. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie, H. Trickey, and P. Winterbottom, ‘‘The Inferno Operat-
ing System’’, Bell Labs Technical Journal Vol. 2, No. 1, Winter 1997.

[MAN] R. A. Lakshmi-Ratan,‘‘The Lucent Technologies Softswitch�Realizing the Promise of Convergence’’, Bell Labs
Technical Journal, Vol. 4, No. 2, April-June 1999, pp. 174-196.

[PATH] J. M. Fossaceca, J. D. Sandoz, and P. Winterbottom, ‘‘The PathStar Access Server: Facilitating Carrier-Scale
Packet Telephony’’, Bell Labs Technical Journal, Vol. 3, No. 4, October-December 1998, pp. 86-102.

[Welc94] B. Welch, ‘‘A Comparison of Three Distributed File System Architectures: Vnode, Sprite, and Plan 9’’, Comput-
ing Systems, Vol. 7, No. 2, pp. 175-199 (1994).


